PAEDIATRIC INTENSIVE CARE – CLINCIAL PRACTICE GUIDELINE

DIABETIC KETOACIDOSIS PROTOCOL (Call consultant on admission)

1. Introduction

DKA is a potentially life-threatening medical emergency due to absolute or relative insulin deficiency coupled with counter-regulatory hormones excess.

2. Aim

To provide a guideline for management of the patient presenting with DKA. The objective of this guideline is to:

- Recognise DKA early
- Correct metabolic disturbances (dehydration, ketoacidosis, hyperglycemia)
- Prevent complications
- Identify and treat precipitating events

3. Parameters of the guideline:

These guidelines are intended for the management of children who present with DKA

4. Definition:

A. DKA: Diabetes Ketoacidosis

Clinical & Biochemical Criteria

Clinical history	Clinical signs	Biochemical
Polyuria, polydipsia,	Varying degree of dehydration,	RBS >11mmol/1,
polyphagia, wt loss or	Kussmaul respiration,	Venous Blood Gas (pH <7.3mmHg,
abdominal pain	fruity (acetone) smell,	$HCO_3 < 15 \text{ mmol/l}$), ketonemia or
or vomiting	altered sensorium	ketonuria and glycosuria

B. CBG – Capillary Blood Glucose

6. Emergency Management:

A. Resuscitation

Airway:	If comatose, insert airways & NG tube				
Breathing:	Give oxygen via face mask (even if O2 Sat > 95% in RA)				
Circulation:	Insert IV cannula \pm IA line & take blood samples (see below)				
	Cardiac monitor (ECG for hypo/hyperkalemia)				
	+ IDC				
	If in shock, give 10ml/kg normal saline bolus ¹ / ₂ -1hr, maximum of 30mls/kg to restore				
	circulation. (N.B. Discuss with the Consultant if the patient has received 30mls/kg)				

Algorithm for the management of diabetic ketoacidosis. Source: adapted from Dunger et al. Karger Publ. 1999

- HbA1c
- Urine ketones and glucose (N.B. Blood ketones is more superior to urine ketones)
- Islet cell antibodies, insulin antibodies, GAD antibodies, antiendomyseal lgA antibodies and TFTs for all newly diagnosed patients.
- Other investigations **only if indicated**; FBC, Urinalysis, Chest X-Ray and Cultures (blood, urine, throat, CSF) then give appropriate antibiotics

(N.B. leukocytosis is common in DKA and does not necessarily indicates sepsis, unless there is fever)

9. Management

A. Fluids

• Treat shock with bolus 10mls/kg 0.9% saline over 1/2-1hr, (max. of 30mls/kg), (*if further fluid boluses required at this stage, discuss with consultant*)

• After restoration of BP, all children with DKA and unequivocal signs of dehydration should be given the following amount of IVF (based on maintenance requirements of 80% of normal, and 3-5% of dehydration corrected over 48hrs) irrespective of their apparent degree of dehydration (see table below):

(ml/hr) 24 28 32 36 40 45 50 55 65 70 75 80 90 95 105 110	Wt (kg)	5	6	7	8	9	10	12	14	16	18	20	25	30	35	40	45
	(ml/hr)	24	28	32	36	40	45	50	55	65	70	75	80	90	95	105	110

(N.B. this fluid rate (ml/hr) includes deficit AND maintenance fluid needs)

- Fluid therapy should be reviewed if oliguria develops due to tubular necrosis caused by severe hypotension before resuscitation may require fluid restriction. But persistent hypovolemia may require extra fluids
- Initial fluids should be 0.9% saline or Lactated Ringers with 40mmol KCL in 1 L for the 1st 48 hrs (*see section on Potassium*).
- Change IVF to 5% dextrose (add 100mls of D50% in 900mls 0.9 N/S), you can increase the dextrose concentration to as high as 12.5% (*discuss with consultant*)^{*I*}
- Indications of adding glucose in the maintenance fluids:
 - Serum glucose is 14 mmol/l
 - Rapid drop in blood glucose level (>5-8 mmol/l per hr) even if the serum glucose is >14 mmol/l
 - > Ketacidosis remains despite correction of hyperglycemia
- Give 2-5ml/kg D10% bolus if CBG 3-4mmol/l
- **Do not** change the IVF to 0.45% saline if the corrected Na level does not rise ¹
- Start oral fluids when clinically improved. (*N.B these oral fluids should be subtracted from IVF if still within 48 hrs*)

B. Insulin

- No initial insulin bolus
- Start insulin after 1 hr of initial IVF

- Add 50 units insulin "short acting" (regular) to 49.5mls of 0.9% saline to make **1units/ml** solution. Prime giving set prior to commencing infusion
- Run at 0.1unit/kg/hr, (N.B. in <5yrs and neonates start with 0.05unit/kg/hr).
- Correct ketoacidosis first before hyperglycemia.
- Do not reduce or stop insulin infusion, instead add glucose in the IVF (see Fluids
-)
- Blood glucose fall rate should be 3-5 mmol/l per hour
- Keep blood glucose at 8-12mmol/l
- The best time to change insulin infusion to SC is just before a meal, when the child is alert and metabolically stable (glucose 8-12mmol/l, pH >7.3 & HCO3 >15). The insulin infusion should only be stopped 30mins after the 1st SC insulin injection.

C. Potassium

- Start KCl at a concentration of 40-60mmol/l (40mmol if Body Wt <30kg, and 60mmol if >30kg)
- Extreme care should be taken if the initial serum K is >5.5mmol/l or if the patient is anuric. Check ECG monitor for peak T wavesECG monitor(*Discuss with Consultant*)

D. Bicarbonate

• Discuss with the Consultant.

E Monitoring & Observation

Hourly blood glucose Hourly fluid input and output Neurological status at least hourly Electrolytes and blood gases 2 - 4hourly after start of IV therapy BP, PR, RR 1-2 hourly & Temperature 4 hourly. Urine ketones and glucose 4 hourly or every voids Monitor ECG for T- wave changes

F. Complications of therapy

- Hypoglycemia
- Hypokalemia
- Aspiration pneumonia
- Cerebral oedema

10. Cerebral edema

• If suspected, exclude hypoglycemia and inform Consultant immediately.

- Treatment:
 - 1. Keep NBM, give 100% O₂, and elevate the head of the bed by 30°
 - **2.** Reduce the rate of IVF to 2/3 of the calculated IVF
 - **3.** Give mannitol 0.5-1g/kg IV over 20 mins, may repeat if no initial response in 30 mins to 2hrs.
 - **4.** Hypertonic saline (2.7-3%) 5-10 ml/kg over 30mins may be an **alternative or a second line** of therapy if no initial response to mannitol
 - **5.** Intubation and mechanical ventilation for impending repiratory failure, **avoid aggressive hyperventilation** (keep PCO₂ at 30-35 mmHg)

11. Transition from Insulin infusion to Subcutaneous:

Step1. Determine the Total daily Insulin Requirement using a Sliding Scale

- Subcutaneous insulin therapy is initiated with regular (short acting) insulin given in a dose of 0.2U/kg/dose, with the subsequent dose being adjusted every 6 h, depending on the response as judged by the blood glucose levels and ketonuria
- Monitor CBG 4 times/day (pre-meals & after midnight)
- Use Table Appendix 2 Column 1, 2 & 5 for calculating and adjusting a sliding scale

Step 2. Use Twice Daily Insulin Regimen

• Divide the Total daily Insulin Requirement into (2/3 before breakfast, 1/3 before dinner)

Step 3. Determine components of each dose

- 2/3 of each dose as intermediate-acting (Isophane) insulin.
- 1/3 as short-acting (Regular)
- If using mixtard insulin, give 2/3 dose in the morning and 1/3 in the afternoon

NOTE:

- CBG can still be fluctuating even after a fixed insulin-meal regimens as calculated above
- First exclude inter-current illness or stress etc.
- Use "10% rule" for insulin dose changes after determining the time at which abnormal CBG occurs.
- Modify insulin doses by 10 %, e.g. if CBG is persistently out of range before dinner then the dose modification applies only to the morning or lunch time insulin and the amount is determined by 10% of the morning dose.

<u>Appendix 1</u>

• **Anion gap:** $(12 \pm 2 \text{mmol/l})$: (Na + K) - (Cl + HCO3).

- **Osmolality:** (280 300mmol/l): 2(Na + K) + Glucose(mmol/l) + Urea
- **Corrected Na:** measured Na + $[2(\text{plasma glucose (mmol/l)} 5.6)] \div 5.6$ to calculate the corrected Na use this link <u>Tools\correctedNA.pdf</u>
- **Fluid calculation,** use this link for calculating fluid rates; http://www.bsped.org.uk/professional/guidelines/docs/DKACalculator.pdf

Appendix 2

TABLE1: Subcutaneous Insulin Dosing

				BOLUS INSULIN
AGE (YR)	TARGET GLUCOSE (MMOL/L)	TOTAL DAILY INSULIN (U/KG/D) *	BASAL INSULIN, % OF TOTAL DAILY DOSE	Units Added per 5.5mmol/l above Target
0–5	5.5-11.1	0.6–0.7	25–30	0.50
5-12	4.4-8.3	0.7–1.0	40–50	0.75
12–18	4.4-8.3	1.0–1.2	40–50	1.0-2.0 ^[‡]

* Newly diagnosed children in the "honeymoon" may only need 60–70% of a full replacement dose. Total daily dose per kg increases with puberty.

[‡] For finer control, extra insulin may be added in 2.8mmol/l increments.

TABLE2: A 6 Hourly Sliding Scale for SC insulin

Age	Insulin	CBG (mmol/l)				
(yrs)	SC	5-10	10-15	15-20	>20	
0-5	Insulin	0.15U/kg/dose	0.15U/kg/dose +	0.15U/kg/dose +		
			0.5Unit	1Unit	GO BACK	
5-12	Insulin	0.2U/kg/dose	0.2U/kg/dose +	0.2U/kg/dose +	TO INSULIN	
			0.75Unit	1.5Units	INFUSION	
12-18	Insulin	0.25U/kg/dose	0.25U/kg/dose +	0.25U/kg/dose +		
			1Unit	2Units		

(N.B. The above Sliding scale table is derived from Table 1)

Appendix 3: Diagnostic criteria for Cerebral Edema in children with DKA

1. Diagnostic criteria for cerebral edema

- Abnormal motor or verbal response to pain
- Decorticate or decerebrate posture
- Cranial nerve palsy (especially lll, 1 V and Vl)
- Abnormal neurogenic respiratory pattern (e.g. grunting, Cheyne-Stroke respiration, apneoa)

2. Major criteria

- Altered mentation/fluctuating level of consciousness
- Sustained heart rate deceleration (decrease of >20 beats/min) not attributing to improved intravascular volume or sleep state.

- 3. Minor criteriaVomiting
- Headache
- Lethargy or not easily arousable
- Diastolic BP >90mmHg
- Age <5 years

• Age-inappropriate incontinence

To diagnose Cerebral Edema, the following criteria has to be met: (*N.B. These criteria has 92% sensitity & 4% false positive rate*)

- ➤ 1 diagnostic criterion OR
- 2 major criteria OR
- ➤ 1 major and 2 minor criteria.

References:

- 1. Wolfdorf J, Graig ME, Daneman D, et al. Diabetic Ketoacidosis in Children and Adolescents with diabetes. (ISPED Clinical Practice Consensus Guidelines 2009 Compendium). Pediatric Diabetes 2009: 10 (Suppl. 12): 118-133
- 2. Edge JA. BSPED Recommended DKA Guidelines 2009, November 2009
- **3.** Jeha GS, Haymond MW. Clinical Features and diagnosis of Diabetic Ketoacidosis in Children. 2010 UpToDate.
- **4.** Jeha GS, Haymond MW. Treatment and Complications of ketoacidosis in Children. 2010 UpToDate.
- 5. Jeha GS, Haymond MW. Cerebral Edema in Children with Diabetic Ketoacidosis. 2010 UpToDate.
- **6.** Ismail HM, Phak NG, Thomas T. Paediatric Protocols for Malaysian Hospitals. 2nd Edition, 2008. Kementerian Kesihatan Malaysia.
- 7. Sperling MA. Type 1 Diabetes Etiology and Treatment. Humana Press Inc. 2003. New Jersey.
- 8. Behrman RE, Kliegman RM, Jenson HB, Stanton BF. Nelson Textbook of Pediatrics. 18th Edition, 2007. Saunders, Philadelphia.
- **9.** Fogel N, Zimmerman D. Management of Diabetic Ketoacidosis in the Emergency Department. 2009: 10(4): 246-251 (not yet published)
- **10.** Clinical Practice Guidelines Diabetic Ketoacidosis, 2006-2009. The Royal Children's Hospital, Melbourne Australia.
- **11.** Dunger DB et al. European Society for Paediatric Endocrinology/Lawson Wilkins Pediatric Endocrine Society Consensus Statement on Diabetic Ketoacidosis in Children and Adolescents. Paediatrics 2004: 113; e133-e140.
- **12.** Jones KM, Molyneux E, Philips B, Wieteslka S. Advanced Paediatric Life Support, The Practical Approach. 4th Edition, 2005. Blackwell Publishing Ltd, Massachusetts, USA.
- **13.** Shann F. Paediatric Intensive Care Guideline, 3rd Edition, 2008. Royal Children's Hospital, Melbourne, Australia
- 14. Lifshitz F. Pediatric Endocrinology. Vol. 1, Obesity, Diabetes Mellitus, Insulin Resistance, and Hypoglycemia. 5th Edition, 2007. Informa Healthcare, New York, USA.
- 15. <u>http://www.bsped.org.uk/professional/guidelines/</u>

Scope and Application	This CPG is intended for use by all health care
	workers in their daily care of paediatric patients

Effective Date	2010				
Supercedes Policy Number	Not applicable				
Review Responsibilities	The Chairperson of the Paediatric CSN will initiate the review of this guidelines every 3 years from the date of issue or as required.				
Further Information	Paediatric CSN Chairperson				
RESPONSIBILITY: CPG Owner: National Paediatric CSNCPG Writer: Ministry of HealthDate: 2010					
Endorsed: National Medicines & Therapeutic Committee, MOH Date: 23 November 2010 Endorsed:					
National Health Executive Committee, MOH Date: 25 November 2010					